Source code for tiled.adapters.array

from typing import Any, List, Optional, Set, Tuple

import dask.array
import numpy
import pandas
from numpy.typing import NDArray

from ..ndslice import NDSlice
from ..storage import Storage
from ..structures.array import ArrayStructure
from ..structures.core import Spec, StructureFamily
from ..type_aliases import JSON


[docs] class ArrayAdapter: """ Wrap an array-like object in an interface that Tiled can serve. Examples -------- Wrap any array-like. >>> ArrayAdapter.from_array(numpy.random.random((100, 100))) >>> ArrayAdapter.from_array(dask.array.from_array(numpy.random.random((100, 100)), chunks=(100, 50))) """ structure_family = StructureFamily.array supported_storage: Set[type[Storage]] = set()
[docs] def __init__( self, array: NDArray[Any], structure: ArrayStructure, *, metadata: Optional[JSON] = None, specs: Optional[List[Spec]] = None, ) -> None: """ Parameters ---------- array : structure : metadata : specs : """ self._array = array self._structure = structure self._metadata = metadata or {} self.specs = specs or []
@classmethod def from_array( cls, array: NDArray[Any], *, shape: Optional[Tuple[int, ...]] = None, chunks: Optional[Tuple[Tuple[int, ...], ...]] = None, dims: Optional[Tuple[str, ...]] = None, metadata: Optional[JSON] = None, specs: Optional[List[Spec]] = None, ) -> "ArrayAdapter": """ Parameters ---------- array : shape : chunks : dims : metadata : specs : Returns ------- """ # May be a list of something; convert to array if not hasattr(array, "__array__"): array = numpy.asanyarray(array) # Convert (experimental) pandas.StringDtype to numpy's unicode string dtype is_likely_string_dtype = isinstance(array.dtype, pandas.StringDtype) or ( array.dtype == "object" and array.dtype.fields is None ) if is_likely_string_dtype: array = numpy.array([str(x) for x in array]) # becomes "<Un" dtype structure = ArrayStructure.from_array( array, shape=shape, chunks=chunks, dims=dims ) return cls( array, structure=structure, metadata=metadata, specs=specs, ) def __repr__(self) -> str: """ Returns ------- """ return f"{type(self).__name__}({self._array!r})" @property def dims(self) -> Optional[Tuple[str, ...]]: return self._structure.dims def metadata(self) -> JSON: return self._metadata def structure(self) -> ArrayStructure: return self._structure def read( self, slice: NDSlice = NDSlice(...), ) -> NDArray[Any]: """ Parameters ---------- slice : Returns ------- """ # _array[...] requires an actual tuple, not just a subclass of tuple array = self._array[tuple(slice)] if slice else self._array if isinstance(self._array, dask.array.Array): return array.compute() return array def read_block( self, block: Tuple[int, ...], slice: NDSlice = NDSlice(...), ) -> NDArray[Any]: """ Parameters ---------- block : slice : Returns ------- """ # Slice the whole array to get this block. slice_, _ = slice_and_shape_from_block_and_chunks(block, self._structure.chunks) # _array[...] requires an actual tuple, not just a subclass of tuple array = self._array[tuple(slice_)] # Slice within the block. array = array[slice] if slice else array if isinstance(self._array, dask.array.Array): return array.compute() return array
def slice_and_shape_from_block_and_chunks( block: Tuple[int, ...], chunks: Tuple[Tuple[int, ...], ...] ) -> tuple[NDSlice, NDSlice]: """ Given dask-like chunks and block id, return slice and shape of the block. Parameters ---------- block : chunks : Returns ------- """ slice_ = [] shape = [] for b, c in zip(block, chunks): start = sum(c[:b]) dim = c[b] slice_.append(slice(start, start + dim)) shape.append(dim) return NDSlice(*slice_), NDSlice(*shape)