4-circle diffractometer example

The IUCr provides a schematic of the 4-circle diffractometer (in horizontal geometry typical of a laboratory instrument).

E4CH geometry

E4CH geometry

At X-ray synchrotrons, the vertical geometry is more common due to the polarization of the X-rays.


Note: This example is available as a Jupyter notebook from the hklpy source code website: https://github.com/bluesky/hklpy/tree/main/examples

Load the hklpy package (named ``hkl``)

Since the hklpy package is a thin interface to the hkl library (compiled C++ code), we need to first load the gobject-introspection package (named ``gi``) and name our required code and version.

This is needed every time before the hkl package is first imported.

import gi
gi.require_version('Hkl', '5.0')

Setup the E4CV diffractometer in hklpy

In hkl E4CV geometry (https://people.debian.org/~picca/hkl/hkl.html#org7ef08ba):

E4CV geometry

E4CV geometry

  • xrays incident on the \(\vec{x}\) direction (1, 0, 0)

axis

moves

rotation axis

vector

omega

sample

\(-\vec{y}\)

[0 -1 0]

chi

sample

\(\vec{x}\)

[1 0 0]

phi

sample

\(-\vec{y}\)

[0 -1 0]

tth

detector

\(-\vec{y}\)

[0 -1 0]

Define this diffractometer

Create a python class that specifies the names of the real-space positioners. We call it FourCircle here but that choice is arbitrary. Pick any valid Python name not already in use.

The argument to the FourCircle class tells which hklpy base class will be used. This sets the geometry. See the hklpy diffractometers documentation for a list of other choices.

In hklpy, the reciprocal-space axes are known as pseudo positioners while the real-space axes are known as real positioners. For the real positioners, it is possible to use different names than the canonical names used internally by the hkl library. That is not covered here.

note: The keyword argument kind="hinted" is an indication that this signal may be plotted.

This demo uses simulated motors. To use EPICS motors, import that structure from ophyd:

from ophyd import EpicsMotor

Then, in the class, replace the real positioners with (substituting with the correct EPICS PV for each motor):

omega = Cpt(EpicsMotor, "pv_prefix:m41", kind="hinted")
chi = Cpt(EpicsMotor, "pv_prefix:m22", kind="hinted")
phi = Cpt(EpicsMotor, "pv_prefix:m35", kind="hinted")
tth = Cpt(EpicsMotor, "pv_prefix:m7", kind="hinted")

and, most important, remove the def __init__() method. It is only needed to define an initial position for the simulators. Otherwise, this will move these EPICS motors to zero.

from hkl.diffract import E4CV
from ophyd import PseudoSingle, SoftPositioner
from ophyd import Component as Cpt

class FourCircle(E4CV):
    """
    Our 4-circle.  Eulerian, vertical scattering orientation.
    """
    # the reciprocal axes are called: pseudo in hklpy
    h = Cpt(PseudoSingle, '', kind="hinted")
    k = Cpt(PseudoSingle, '', kind="hinted")
    l = Cpt(PseudoSingle, '', kind="hinted")

    # the motor axes are called: real in hklpy
    omega = Cpt(SoftPositioner, kind="hinted")
    chi = Cpt(SoftPositioner, kind="hinted")
    phi = Cpt(SoftPositioner, kind="hinted")
    tth = Cpt(SoftPositioner, kind="hinted")

    def __init__(self, *args, **kwargs):
        """Define an initial position for simulators."""
        super().__init__(*args, **kwargs)

        for p in self.real_positioners:
            p._set_position(0)  # give each a starting position
fourc = FourCircle("", name="fourc")

Add a sample with a crystal structure

from hkl.util import Lattice

# add the sample to the calculation engine
a0 = 5.431
fourc.calc.new_sample(
    "silicon",
    lattice=Lattice(a=a0, b=a0, c=a0, alpha=90, beta=90, gamma=90)
    )
HklSample(name='silicon', lattice=LatticeTuple(a=5.431, b=5.431, c=5.431, alpha=90.0, beta=90.0, gamma=90.0), ux=Parameter(name='None (internally: ux)', limits=(min=-180.0, max=180.0), value=0.0, fit=True, inverted=False, units='Degree'), uy=Parameter(name='None (internally: uy)', limits=(min=-180.0, max=180.0), value=0.0, fit=True, inverted=False, units='Degree'), uz=Parameter(name='None (internally: uz)', limits=(min=-180.0, max=180.0), value=0.0, fit=True, inverted=False, units='Degree'), U=array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]]), UB=array([[ 1.15691131e+00, -7.08403864e-17, -7.08403864e-17],
       [ 0.00000000e+00,  1.15691131e+00, -7.08403864e-17],
       [ 0.00000000e+00,  0.00000000e+00,  1.15691131e+00]]), reflections=[])

Setup the UB orientation matrix using hklpy

Define the crystal’s orientation on the diffractometer using the 2-reflection method described by Busing & Levy, Acta Cryst 22 (1967) 457.

Choose the same wavelength X-rays for both reflections

fourc.calc.wavelength = 1.54 # Angstrom (8.0509 keV)

Find the first reflection and identify its Miller indices: (hkl)

r1 = fourc.calc.sample.add_reflection(
    4, 0, 0,
    position=fourc.calc.Position(
        tth=69.0966,
        omega=-145.451,
        chi=0,
        phi=0,
    )
)

Find the second reflection

r2 = fourc.calc.sample.add_reflection(
    0, 4, 0,
    position=fourc.calc.Position(
        tth=69.0966,
        omega=-145.451,
        chi=90,
        phi=0,
    )
)

Compute the UB orientation matrix

The compute_UB() method always returns 1. Ignore it.

fourc.calc.sample.compute_UB(r1, r2)
1

Report what we have setup

import pyRestTable

tbl = pyRestTable.Table()
tbl.labels = "term value".split()
tbl.addRow(("energy, keV", fourc.calc.energy))
tbl.addRow(("wavelength, angstrom", fourc.calc.wavelength))
tbl.addRow(("position", fourc.position))
tbl.addRow(("sample name", fourc.sample_name.get()))
tbl.addRow(("[U]", fourc.U.get()))
tbl.addRow(("[UB]", fourc.UB.get()))
tbl.addRow(("lattice", fourc.lattice.get()))
print(tbl)

print(f"sample\t{fourc.calc.sample}")
==================== ===================================================
term                 value
==================== ===================================================
energy, keV          8.050922077922078
wavelength, angstrom 1.54
position             FourCirclePseudoPos(h=-0.0, k=0.0, l=0.0)
sample name          silicon
[U]                  [[-1.22173048e-05 -1.22173048e-05 -1.00000000e+00]
                      [ 0.00000000e+00 -1.00000000e+00  1.22173048e-05]
                      [-1.00000000e+00  1.49262536e-10  1.22173048e-05]]
[UB]                 [[-1.41343380e-05 -1.41343380e-05 -1.15691131e+00]
                      [ 0.00000000e+00 -1.15691131e+00  1.41343380e-05]
                      [-1.15691131e+00  1.72683586e-10  1.41343380e-05]]
lattice              [ 5.431  5.431  5.431 90.    90.    90.   ]
==================== ===================================================

sample      HklSample(name='silicon', lattice=LatticeTuple(a=5.431, b=5.431, c=5.431, alpha=90.0, beta=90.0, gamma=90.0), ux=Parameter(name='None (internally: ux)', limits=(min=-180.0, max=180.0), value=-45.0, fit=True, inverted=False, units='Degree'), uy=Parameter(name='None (internally: uy)', limits=(min=-180.0, max=180.0), value=-89.99901005102187, fit=True, inverted=False, units='Degree'), uz=Parameter(name='None (internally: uz)', limits=(min=-180.0, max=180.0), value=135.00000000427607, fit=True, inverted=False, units='Degree'), U=array([[-1.22173048e-05, -1.22173048e-05, -1.00000000e+00],
       [ 0.00000000e+00, -1.00000000e+00,  1.22173048e-05],
       [-1.00000000e+00,  1.49262536e-10,  1.22173048e-05]]), UB=array([[-1.41343380e-05, -1.41343380e-05, -1.15691131e+00],
       [ 0.00000000e+00, -1.15691131e+00,  1.41343380e-05],
       [-1.15691131e+00,  1.72683586e-10,  1.41343380e-05]]), reflections=[(h=4.0, k=0.0, l=0.0), (h=0.0, k=4.0, l=0.0)], reflection_measured_angles=array([[0.        , 1.57079633],
       [1.57079633, 0.        ]]), reflection_theoretical_angles=array([[0.        , 1.57079633],
       [1.57079633, 0.        ]]))

Check the orientation matrix

Perform checks with forward (hkl to angle) and inverse (angle to hkl) computations to verify the diffractometer will move to the same positions where the reflections were identified.

Constrain the motors to limited ranges

  • allow for slight roundoff errors

  • keep tth in the positive range

  • keep omega in the negative range

  • keep phi fixed at zero

fourc.calc["tth"].limits = (-0.001, 180)
fourc.calc["omega"].limits = (-180, 0.001)

fourc.phi.move(0)
fourc.engine.mode = "constant_phi"

(400) reflection test

  1. Check the inverse (angles -> (hkl)) computation.

  2. Check the forward ((hkl) -> angles) computation.

Check the inverse calculation: (400)

To calculate the (hkl) corresponding to a given set of motor angles, call fourc.inverse((h, k, l)). Note the second set of parentheses needed by this function.

The values are specified, without names, in the order specified by fourc.calc.physical_axis_names.

print("axis names:", fourc.calc.physical_axis_names)
axis names: ['omega', 'chi', 'phi', 'tth']

Now, proceed with the inverse calculation.

sol = fourc.inverse((-145.451, 0, 0, 69.0966))
print("(4 0 0) ?", f"{sol.h:.2f}", f"{sol.k:.2f}", f"{sol.l:.2f}")
(4 0 0) ? 4.00 0.00 0.00

Check the forward calculation: (400)

Compute the angles necessary to position the diffractometer for the given reflection.

Note that for the forward computation, more than one set of angles may be used to reach the same crystal reflection. This test will report the default selection. The default selection (which may be changed through methods described in the hkl.calc module) is the first solution.

function

returns

fourc.forward()

The default solution

fourc.calc.forward()

List of all allowed solutions.

sol = fourc.forward((4, 0, 0))
print(
    "(400) :",
    f"tth={sol.tth:.4f}",
    f"omega={sol.omega:.4f}",
    f"chi={sol.chi:.4f}",
    f"phi={sol.phi:.4f}"
    )
(400) : tth=69.0985 omega=-145.4500 chi=0.0000 phi=0.0000

(040) reflection test

Repeat the inverse and forward calculations for the second orientation reflection.

Check the inverse calculation: (040)

sol = fourc.inverse((-145.451, 90, 0, 69.0966))
print("(0 4 0) ?", f"{sol.h:.2f}", f"{sol.k:.2f}", f"{sol.l:.2f}")
(0 4 0) ? 0.00 4.00 0.00

Check the forward calculation: (040)

sol = fourc.forward((0, 4, 0))
print(
    "(040) :",
    f"tth={sol.tth:.4f}",
    f"omega={sol.omega:.4f}",
    f"chi={sol.chi:.4f}",
    f"phi={sol.phi:.4f}"
    )
(040) : tth=69.0985 omega=-145.4500 chi=90.0000 phi=0.0000

(440) reflection: angles

sol = fourc.forward((4, 4, 0))
print(
    "(440) :",
    f"tth={sol.tth:.4f}",
    f"omega={sol.omega:.4f}",
    f"chi={sol.chi:.4f}",
    f"phi={sol.phi:.4f}"
    )
(440) : tth=106.6471 omega=-126.6755 chi=45.0000 phi=0.0000

Scan in reciprocal space using Bluesky

To scan with Bluesky, we need more setup.

%matplotlib inline

from bluesky import RunEngine
from bluesky import SupplementalData
from bluesky.callbacks.best_effort import BestEffortCallback
import bluesky.plans as bp
import bluesky.plan_stubs as bps
import databroker
import matplotlib.pyplot as plt

plt.ion()

bec = BestEffortCallback()
db = databroker.temp().v1
sd = SupplementalData()

RE = RunEngine({})
RE.md = {}
RE.preprocessors.append(sd)
RE.subscribe(db.insert)
RE.subscribe(bec)
1

(h00) scan near (400)

RE(bp.scan([], fourc.h, 3.9, 4.1, 5))
Transient Scan ID: 1     Time: 2020-12-09 12:02:58
Persistent Unique Scan ID: '26088e62-fd00-40ec-bfd3-fccf3a4d320d'
New stream: 'primary'
+-----------+------------+------------+
|   seq_num |       time |    fourc_h |
+-----------+------------+------------+
|         1 | 12:02:58.3 |      3.900 |
|         2 | 12:02:58.3 |      3.950 |
|         3 | 12:02:58.3 |      4.000 |
|         4 | 12:02:58.3 |      4.050 |
|         5 | 12:02:58.3 |      4.100 |
+-----------+------------+------------+
generator scan ['26088e62'] (scan num: 1)
('26088e62-fd00-40ec-bfd3-fccf3a4d320d',)

chi scan from (400) to (040)

RE(bp.scan([fourc.chi, fourc.h, fourc.k, fourc.l], fourc.chi, 0, 90, 10))
Transient Scan ID: 2     Time: 2020-12-09 12:02:58
Persistent Unique Scan ID: '8072de45-4a80-4e47-9df9-151623ace6ff'
New stream: 'primary'
+-----------+------------+------------+------------+------------+------------+
|   seq_num |       time |  fourc_chi |    fourc_k |    fourc_l |    fourc_h |
+-----------+------------+------------+------------+------------+------------+
|         1 | 12:02:58.7 |      0.000 |      0.000 |      0.000 |      4.100 |
|         2 | 12:02:58.9 |     10.000 |      0.712 |     -0.000 |      4.038 |
|         3 | 12:02:59.2 |     20.000 |      1.402 |     -0.000 |      3.853 |
|         4 | 12:02:59.4 |     30.000 |      2.050 |     -0.000 |      3.551 |
|         5 | 12:02:59.7 |     40.000 |      2.635 |     -0.000 |      3.141 |
|         6 | 12:02:59.9 |     50.000 |      3.141 |     -0.000 |      2.635 |
|         7 | 12:03:00.1 |     60.000 |      3.551 |     -0.000 |      2.050 |
|         8 | 12:03:00.3 |     70.000 |      3.853 |     -0.000 |      1.402 |
|         9 | 12:03:00.6 |     80.000 |      4.038 |     -0.000 |      0.712 |
|        10 | 12:03:00.8 |     90.000 |      4.100 |      0.000 |      0.000 |
+-----------+------------+------------+------------+------------+------------+
generator scan ['8072de45'] (scan num: 2)
('8072de45-4a80-4e47-9df9-151623ace6ff',)
../../_images/e4cv_40_2.svg

(0k0) scan near (040)

RE(bp.scan([], fourc.k, 3.9, 4.1, 5))
Transient Scan ID: 3     Time: 2020-12-09 12:03:01
Persistent Unique Scan ID: 'aa3ef21b-80d2-472b-a459-d5bd30cae54a'
New stream: 'primary'
+-----------+------------+------------+
|   seq_num |       time |    fourc_k |
+-----------+------------+------------+
|         1 | 12:03:01.9 |      3.900 |
|         2 | 12:03:01.9 |      3.950 |
|         3 | 12:03:01.9 |      4.000 |
|         4 | 12:03:01.9 |      4.050 |
|         5 | 12:03:01.9 |      4.100 |
+-----------+------------+------------+
generator scan ['aa3ef21b'] (scan num: 3)
('aa3ef21b-80d2-472b-a459-d5bd30cae54a',)

(hk0) scan near (440)

RE(bp.scan([], fourc.h, 3.9, 4.1, fourc.k, 3.9, 4.1, 5))
Transient Scan ID: 4     Time: 2020-12-09 12:03:02
Persistent Unique Scan ID: '36abd81c-c313-4035-acde-67782c2908d1'
New stream: 'primary'
+-----------+------------+------------+------------+------------+-------------+------------+------------+------------+
|   seq_num |       time |    fourc_h |    fourc_k |    fourc_l | fourc_omega |  fourc_chi |  fourc_phi |  fourc_tth |
+-----------+------------+------------+------------+------------+-------------+------------+------------+------------+
|         1 | 12:03:02.4 |      3.900 |      3.900 |      0.000 |    -128.558 |     45.000 |      0.000 |    102.883 |
|         2 | 12:03:03.0 |      3.950 |      3.950 |     -0.000 |    -127.627 |     45.000 |      0.000 |    104.745 |
|         3 | 12:03:03.7 |      4.000 |      4.000 |     -0.000 |    -126.675 |     45.000 |      0.000 |    106.647 |
|         4 | 12:03:04.3 |      4.050 |      4.050 |     -0.000 |    -125.703 |     45.000 |      0.000 |    108.593 |
|         5 | 12:03:05.0 |      4.100 |      4.100 |      0.000 |    -124.706 |     45.000 |      0.000 |    110.585 |
+-----------+------------+------------+------------+------------+-------------+------------+------------+------------+
generator scan ['36abd81c'] (scan num: 4)
('36abd81c-c313-4035-acde-67782c2908d1',)
../../_images/e4cv_44_2.svg