databroker.Header.table¶
- Header.table(stream_name='primary', fields=None, fill=False, timezone=None, convert_times=True, localize_times=True)[source]¶
- Load the data from one event stream as a table ( - pandas.DataFrame).- Parameters
- stream_namestr, optional
- Get events from only “event stream” with this name. - Default is ‘primary’ 
- fieldsList[str], optional
- whitelist of field names of interest; if None, all are returned - Default is None 
- fillbool or Iterable[str], optional
- Which fields to fill. If True, fill all possible fields. - Each event will have the data filled for the intersection of it’s external keys and the fields requested filled. - Default is False 
- handler_registrydict, optional
- mapping filestore specs (strings) to handlers (callable classes) 
- convert_timesbool, optional
- Whether to convert times from float (seconds since 1970) to numpy datetime64, using pandas. True by default. 
- timezonestr, optional
- e.g., ‘US/Eastern’; if None, use metadatastore configuration in self.mds.config[‘timezone’] 
- localize_timesbool, optional
- If the times should be localized to the ‘local’ time zone. If True (the default) the time stamps are converted to the localtime zone (as configure in mds). - This is problematic for several reasons: - apparent gaps or duplicate times around DST transitions 
- incompatibility with every other time stamp (which is in UTC) 
 - however, this makes the dataframe repr look nicer - This implies convert_times. - Defaults to True to preserve back-compatibility. 
 
- Returns
- tablepandas.DataFrame
 
 - Examples - Load the ‘primary’ data stream from the most recent run into a table. - >>> h = db[-1] >>> h.table() - This is equivalent. (The default stream_name is ‘primary’.) - >>> h.table(stream_name='primary') time intensity 0 2017-07-16 12:12:37.239582345 102 1 2017-07-16 12:12:39.958385283 103 - Load the ‘baseline’ data stream. - >>> h.table(stream_name='baseline') time temperature 0 2017-07-16 12:12:35.128515999 273 1 2017-07-16 12:12:40.128515999 274