Source code for ophyd_async.core._table

from __future__ import annotations

from collections.abc import Sequence
from typing import Annotated, Any, TypeVar, get_origin

import numpy as np
from pydantic import BaseModel, ConfigDict, Field, model_validator
from pydantic_numpy.helper.annotation import NpArrayPydanticAnnotation

from ._utils import get_dtype

TableSubclass = TypeVar("TableSubclass", bound="Table")


def _concat(value1, value2):
    if isinstance(value1, np.ndarray):
        return np.concatenate((value1, value2))
    else:
        return value1 + value2


[docs] class Table(BaseModel): """An abstraction of a Table of str to numpy array.""" # You can use Table in 2 ways: # 1. Table(**whatever_pva_gives_us) when pvi adds a Signal to a Device that is not # type hinted # 2. MyTable(**whatever_pva_gives_us) where the Signal is type hinted # # For 1 we want extra="allow" so it is passed through as is. There are no base class # fields, only "extra" fields, so they must be allowed. For 2 we want extra="forbid" # so it is strictly checked against the BaseModel we are supplied. model_config = ConfigDict(extra="allow") @classmethod def __init_subclass__(cls): # But forbit extra in subclasses so it gets validated cls.model_config = ConfigDict(validate_assignment=True, extra="forbid") # Change fields to have the correct annotations for k, anno in cls.__annotations__.items(): if get_origin(anno) is np.ndarray: dtype = get_dtype(anno) new_anno = Annotated[ anno, NpArrayPydanticAnnotation.factory( data_type=dtype.type, dimensions=1, strict_data_typing=False ), Field( default_factory=lambda dtype=dtype: np.array([], dtype=dtype) ), ] elif get_origin(anno) is Sequence: new_anno = Annotated[anno, Field(default_factory=list)] else: raise TypeError(f"Cannot use annotation {anno} in a Table") cls.__annotations__[k] = new_anno def __add__(self, right: TableSubclass) -> TableSubclass: """Concatenate the arrays in field values.""" if type(right) is not type(self): raise RuntimeError( f"{right} is not a `Table`, or is not the same " f"type of `Table` as {self}." ) return type(right)( **{ field_name: _concat( getattr(self, field_name), getattr(right, field_name) ) for field_name in self.model_fields } ) def __eq__(self, value: object) -> bool: return super().__eq__(value)
[docs] def numpy_dtype(self) -> np.dtype: dtype = [] for k, v in self: if isinstance(v, np.ndarray): dtype.append((k, v.dtype)) else: # TODO: use np.dtypes.StringDType when we can use in structured arrays # https://github.com/numpy/numpy/issues/25693 dtype.append((k, np.dtype("S40"))) return np.dtype(dtype)
[docs] def numpy_table(self, selection: slice | None = None) -> np.ndarray: array = None for k, v in self: if selection: v = v[selection] if array is None: array = np.empty(v.shape, dtype=self.numpy_dtype()) array[k] = v assert array is not None return array
[docs] @model_validator(mode="before") @classmethod def validate_array_dtypes(cls, data: Any) -> Any: if isinstance(data, dict): data_dict = data elif isinstance(data, Table): data_dict = data.model_dump() else: raise AssertionError(f"Cannot construct Table from {data}") for field_name, field_value in cls.model_fields.items(): if ( get_origin(field_value.annotation) is np.ndarray and field_value.annotation and field_name in data_dict ): data_value = data_dict[field_name] expected_dtype = get_dtype(field_value.annotation) # Convert to correct dtype, but only if we don't lose precision # as a result cast_value = np.array(data_value).astype(expected_dtype) assert np.array_equal(data_value, cast_value), ( f"{field_name}: Cannot cast {data_value} to {expected_dtype} " "without losing precision" ) data_dict[field_name] = cast_value return data_dict
[docs] @model_validator(mode="after") def validate_lengths(self) -> Table: lengths: dict[int, set[str]] = {} for field_name, field_value in self: lengths.setdefault(len(field_value), set()).add(field_name) assert len(lengths) <= 1, f"Columns should be same length, got {lengths=}" return self
def __len__(self) -> int: return len(next(iter(self))[1]) def __getitem__(self, item: int | slice) -> np.ndarray: if isinstance(item, int): return self.numpy_table(slice(item, item + 1)) else: return self.numpy_table(item)