Navigate with the Python Client¶
In this tutorial we will navigate a collection of datasets using Tiled’s Python client.
To follow along, start the Tiled server with example data from a Terminal.
tiled serve demo
Now, in a Python interpreter, connect, with the Python client.
from tiled.client import from_uri
client = from_uri("http://localhost:8000")
This holds a nested structure of data. Conceptually, it corresponds well to a directory of files or hierarchical structure like an HDF5 file or XML file.
Tiled provides a utility for visualizing a nested structure.
>>> from tiled.utils import tree
>>> tree(client)
├── big_image
├── small_image
├── medium_image
├── sparse_image
├── awkward_array
├── tiny_image
├── tiny_cube
├── tiny_hypercube
├── short_table
├── long_table
├── wide_table
├── structured_data
│ ├── pets
│ └── xarray_dataset
Each (sub)tree displays the names of a couple of its entries—up to however many fit on one line.
>>> client
<Container {'big_image', 'small_image', 'medium_image', ...} ~16 entries>
Containers act like (nested) mappings in Python. All the (read-only) methods that work on Python dictionaries work on Containers. We can lookup a specific value by its key
>>> client['structured_data']
<Container {'pets', 'xarray_dataset'}>
list all the keys
>>> list(client)
['big_image',
'small_image',
'medium_image',
'sparse_image',
'awkward_array',
'tiny_image',
'tiny_cube',
'tiny_hypercube',
'short_table',
'long_table',
'wide_table',
'structured_data',
'flat_array',
'low_entropy',
'high_entropy',
'dynamic']
and loop over keys, values, or (key, value)
pairs.
for key in client:
...
# This is equivalent:
for key in client.keys():
...
for value in client.values():
...
for key, value in client.items():
...
Containers also support efficient list-like access. This is useful for quickly looking at a couple or efficiently grabbing batches of items, especially if you need to start from the middle.
>>> client.keys().first() # Acces the first key.
'big_image'
>>> client.keys().head() # Access the first several keys.
['big_image',
'small_image',
'medium_image',
'sparse_image',
'awkward_array']
>>> client.keys().head(3) # Access the first N keys.
['big_image',
'small_image',
'medium_image']
>>> client.keys()[1:3] # Access just the keys for entries 1:3.
['small_image', 'medium_image']
All the same methods work for values
>>> client.values()[1:3] # Access the values (which may be more expensive).
[<ArrayClient shape=(300, 300) chunks=((300,), (300,)) dtype=float64>, <ArrayClient shape=(1000, 1000) chunks=((1000,), (1000,)) dtype=float64>]
and (key, value)
pairs (“items”).
>>> client.items()[1:3] # Access (key, value) pairs.
[('small_image', <ArrayClient shape=(300, 300) chunks=((300,), (300,)) dtype=float64>),
('medium_image', <ArrayClient shape=(1000, 1000) chunks=((1000,), (1000,)) dtype=float64>)]
Each item has metadata
, which is a simple dict.
The content of this dict has no special meaning to Tiled; it’s the user’s
space to use or not.
>>> client.metadata # happens to be empty
DictView({})
>>> client['short_table'].metadata # happens to have some stuff
DictView({'animal': 'dog', 'color': 'red'})
See a later tutorial for how to search Containers with queries.