Source code for tiled.adapters.tiff

import builtins
import hashlib

import tifffile

from ..server.object_cache import with_object_cache
from ..structures.array import ArrayStructure, BuiltinDtype
from ..structures.core import StructureFamily


[docs]class TiffAdapter: """ Read a TIFF file. Examples -------- >>> TiffAdapter("path/to/file.tiff") """ structure_family = StructureFamily.array
[docs] def __init__( self, path, *, structure=None, metadata=None, specs=None, access_policy=None, ): self._file = tifffile.TiffFile(path) self._cache_key = (type(self).__module__, type(self).__qualname__, path) self.specs = specs or [] self._provided_metadata = metadata or {} self.access_policy = access_policy if structure is None: if self._file.is_shaped: shape = tuple(self._file.shaped_metadata[0]["shape"]) else: arr = with_object_cache(self._cache_key, self._file.asarray) shape = arr.shape structure = ArrayStructure( shape=shape, chunks=tuple((dim,) for dim in shape), data_type=BuiltinDtype.from_numpy_dtype(self._file.series[0].dtype), ) self._structure = structure
def metadata(self): # This contains some enums, but Python's built-in JSON serializer # handles them fine (converting to str or int as appropriate). d = {tag.name: tag.value for tag in self._file.pages[0].tags.values()} d.update(self._provided_metadata) return d def read(self, slice=None): # TODO Is there support for reading less than the whole array # if we only want a slice? I do not think that is possible with a # single-page TIFF but I'm not sure. Certainly it *is* possible for # multi-page TIFFs. arr = with_object_cache(self._cache_key, self._file.asarray) if slice is not None: arr = arr[slice] return arr def read_block(self, block, slice=None): # For simplicity, this adapter always treat a single TIFF file as one # chunk. This could be relaxed in the future. if sum(block) != 0: raise IndexError(block) arr = with_object_cache(self._cache_key, self._file.asarray) if slice is not None: arr = arr[slice] return arr def structure(self): return self._structure
class TiffSequenceAdapter: structure_family = "array" @classmethod def from_files( cls, *files, structure=None, metadata=None, specs=None, access_policy=None, ): seq = tifffile.TiffSequence(sorted(files)) return cls( seq, structure=structure, specs=specs, metadata=metadata, access_policy=access_policy, ) def __init__( self, seq, *, structure=None, metadata=None, specs=None, access_policy=None, ): self._seq = seq self._cache_key = ( type(self).__module__, type(self).__qualname__, hashlib.md5(str(self._seq.files).encode()).hexdigest(), ) # TODO Check shape, chunks against reality. self.specs = specs or [] self._provided_metadata = metadata or {} self.access_policy = access_policy if structure is None: shape = (len(self._seq), *self.read(slice=0).shape) structure = ArrayStructure( shape=shape, # one chunks per underlying TIFF file chunks=((1,) * shape[0], (shape[1],), (shape[2],)), # Assume all files have the same data type data_type=BuiltinDtype.from_numpy_dtype(self.read(slice=0).dtype), ) self._structure = structure def metadata(self): # TODO How to deal with the many headers? return self._provided_metadata def read(self, slice=None): """Return a numpy array Receives a sequence of values to select from a collection of tiff files that were saved in a folder The input order is defined as files --> X slice --> Y slice read() can receive one value or one slice to select all the data from one file or a sequence of files; or it can receive a tuple of up to three values (int or slice) to select a more specific sequence of pixels of a group of images """ # Print("Inside Adapter:", slice) if slice is None: return with_object_cache(self._cache_key, self._seq.asarray) if isinstance(slice, int): # e.g. read(slice=0) return with_object_cache( self._cache_key + (slice,), tifffile.TiffFile(self._seq.files[slice]).asarray, ) # e.g. read(slice=(...)) if isinstance(slice, tuple): if len(slice) == 0: return with_object_cache(self._cache_key, self._seq.asarray) image_axis, *the_rest = slice # Could be int or slice # (0, slice(...)) or (0,....) are converted to a list if isinstance(image_axis, int): # e.g. read(slice=(0, ....)) arr = with_object_cache( self._cache_key + (image_axis,), tifffile.TiffFile(self._seq.files[image_axis]).asarray, ) if isinstance(image_axis, builtins.slice): if image_axis.start is None: slice_start = 0 else: slice_start = image_axis.start if image_axis.step is None: slice_step = 1 else: slice_step = image_axis.step arr = with_object_cache( self._cache_key + (slice_start, image_axis.stop, slice_step), tifffile.TiffSequence( self._seq.files[ slice_start : image_axis.stop : slice_step # noqa: E203 ] ).asarray, ) arr = arr[tuple(the_rest)] return arr if isinstance(slice, builtins.slice): # Check for start and step which can be optional if slice.start is None: slice_start = 0 else: slice_start = slice.start if slice.step is None: slice_step = 1 else: slice_step = slice.step arr = with_object_cache( self._cache_key + (slice_start, slice.stop, slice_step), tifffile.TiffSequence( self._seq.files[slice_start : slice.stop : slice_step] # noqa: E203 ).asarray, ) return arr def read_block(self, block, slice=None): if block[1:] != (0, 0): raise IndexError(block) arr = self.read(builtins.slice(block[0], block[0] + 1)) if slice is not None: arr = arr[slice] return arr def structure(self): return self._structure