tiled.adapters.csv.CSVAdapter

class tiled.adapters.csv.CSVAdapter(data_uris: Iterable[str], structure: TableStructure | None = None, metadata: Dict[str, str | int | float | bool | Dict[str, Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]] | List[Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]]] | None = None, specs: List[Spec] | None = None, **kwargs: Any | None)[source]

Adapter for tabular data stored as partitioned text (csv) files

__init__(data_uris: Iterable[str], structure: TableStructure | None = None, metadata: Dict[str, str | int | float | bool | Dict[str, Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]] | List[Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]]] | None = None, specs: List[Spec] | None = None, **kwargs: Any | None) None[source]

Adapter for partitioned tabular data stored as a sequence of text (csv) files

Parameters:
data_urislist of uris to csv files
structure
metadata
specs
kwargsdict

any keyword arguments that can be passed to the pandas.read_csv function, e.g. names, sep, dtype, etc.

Methods

__init__(data_uris[, structure, metadata, specs])

Adapter for partitioned tabular data stored as a sequence of text (csv) files

append_partition(data, partition)

Append data to an existing partition

from_catalog(data_source, node, /, **kwargs)

from_uris(*data_uris, **kwargs)

generate_data_sources(mimetype, ...)

get(key)

init_storage(data_uri, structure)

Initialize partitioned csv storage

items()

Iterator over table columns

metadata()

read([fields])

read_partition(indx[, fields])

Read a single partition

structure()

write(data)

Default writing function to a dataset with a single partition

write_partition(data, partition)

Write data to a new partition or overwrite an existing one

Attributes

structure_family