tiled.adapters.table.TableAdapter

class tiled.adapters.table.TableAdapter(partitions: DataFrame | DataFrame, structure: TableStructure, *, metadata: Dict[str, str | int | float | bool | Dict[str, Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]] | List[Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]]] | None = None, specs: List[Spec] | None = None, access_policy: AccessPolicy | None = None)[source]

Wrap a dataframe-like object in an interface that Tiled can serve.

Examples

>>> df = pandas.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
>>> DataFrameAdapter.from_pandas(df, npartitions=1)
__init__(partitions: DataFrame | DataFrame, structure: TableStructure, *, metadata: Dict[str, str | int | float | bool | Dict[str, Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]] | List[Dict[str, str | int | float | bool | Dict[str, JSON] | List[JSON]]]] | None = None, specs: List[Spec] | None = None, access_policy: AccessPolicy | None = None) None[source]
Parameters:
partitions
structure
metadata
specs
access_policy

Methods

__init__(partitions, structure, *[, ...])

from_dask_dataframe(ddf[, metadata, specs, ...])

from_dict(*args[, metadata, specs, ...])

from_pandas(*args[, metadata, specs, ...])

items()

metadata()

read([fields])

read_partition(partition[, fields])

structure()

Attributes

structure_family